Practical tools for exploring data and models

Hadley Alexander Wickham
“The process of data analysis is one of parallel evolution. Interrelated aspects of the analysis evolve together, each affecting the others.”
– Paul Velleman, 1997
“Interrelated aspects of the analysis evolve together”

Questions

Form reshape

Views ggplot2

Models classifly, clusterfly, meifly
A grammar of graphics: past, present, and future
Past
“If any number of magnitudes are each the same multiple of the same number of other magnitudes, then the sum is that multiple of the sum.”

Euclid, ~300 BC

\[m(\Sigma x) = \Sigma (mx) \]
The grammar of graphics

- An abstraction which makes thinking, reasoning and communicating graphics easier
Present
ggplot2

- High-level package for creating statistical graphics. A rich set of components + user friendly wrappers
- John Chambers award in 2006

- Philosophy of ggplot
- Examples from a recent paper
- New methods facilitated by ggplot
Philosophy

• Make graphics easier
• Use the grammar to facilitate research into new types of display
• Continuum of expertise:
 • start simple by using the results of the theory
 • grow in power by understanding the theory
 • begin to contribute new components
• Orthogonal components and minimal special cases should make learning easy(er?)
Examples

• Exploratory graphics created with GGobi, Mondrian, Manet, Gauguin and R, but needed consistent high-quality graphics that work in black and white for publication

• So... used ggplot to recreate the graphics
qplot(long, lat, data = expo, geom="tile", fill = ozone,
 facets = year ~ month) +
scale_fill_gradient(low="white", high="black") + map
ggplot(df, aes(x = long + res * x, y = lat + res * y)) + map +
geom_polygon(aes(group = interaction(long, lat)), fill=NA, colour="black")
ggplot(rexpo, aes(x = long + res * rtime, y = lat + res * rpressure))
+ map + geom_line(aes(group = id))

Initially created with correlation tour
library(maps)
outlines <- as.data.frame(map("world", xlim=-c(113.8, 56.2), ylim=c(-21.2, 36.2)))

map <- c(
 geom_path(aes(x = x, y = y), data = outlines, colour = alpha("grey20", 0.2)),
 scale_x_continuous("", limits = c(-113.8, -56.2), breaks = c(-110, -85, -60)),
 scale_y_continuous("", limits = c(-21.2, 36.2))
)
qplot(date, value, data = clusterm, group = id, geom = "line", facets = cluster ~ variable, colour = factor(cluster)) + scale_y_continuous("", breaks=NA) + scale_colour_brewer(palette="Spectral")

ggplot(clustered, aes(x = long, y = lat)) + geom_tile(aes(width = 2.5, height = 2.5, fill = factor(cluster))) + facet_grid(cluster ~ .) + map + scale_fill_brewer(palette="Spectral")

qplot(date, value, data = clusterm, group = id, geom = "line", facets = cluster ~ variable, colour = factor(cluster)) + scale_y_continuous("", breaks=NA) + scale_colour_brewer(palette="Spectral")
New methods

• Supplemental statistical summaries
• Iterating between graphics and models
• Inspired by ideas of Tukey (and others)
• Exploratory graphics, not as pretty
Intro to data

- Response of trees to gypsy moth attack
- 5 genotypes of tree: Dan-2, Sau-2, Sau-3, Wau-1, Wau-2
- 2 treatments: NGM / GM
- 2 nutrient levels: low / high
- 5 reps
- Measured: weight, N, tannin, salicylates
qplot(genotype, weight, data=b)
qplot(genotype, weight, data=b, colour=nutr)
```r
qplot(reorder(genotype, weight), weight, data=b, colour=nutr)
```
Comparing means

• For inference, interested in comparing the means of the groups
• But this is hard to do visually as eyes naturally compare ranges
• What can we do?
Supplemental summaries

- `smry <- stat_summary(
 fun="mean_cl_boot", conf.int=0.68,
 geom="crossbar", width=0.3
)

- Adds another layer with summary statistics: mean + bootstrap estimate of standard error

- Motivation: still exploratory, so minimise distributional assumptions, will model explicitly later

From Hmisc
qplot(genotype, weight, data=b, colour=nutr)
qplot(genotype, weight, data=b, colour=nuotr) + smry
Iterating graphics and modelling

- Clearly strong genotype effect. Is there a nutr effect? Is there a nutr-genotype interaction?

- Hard to see from this plot - what if we remove the genotype main effect? What if we remove the nutr main effect?

- How does this compare an ANOVA?
qplot(genotype, weight, data=b, colour=nutr) + smry
\begin{verbatim}
weight2 <- resid(lm(weight ~ genotype, data=b))
qplot(genotype, weight2, data=b, colour=nutr) + smry
\end{verbatim}
b$weight3 <- resid(lm(weight ~ genotype + nutr, data=b));
qplot(genotype, weight3, data=b, colour=nutr) + smry
```
anova(lm(weight ~ genotype * nutr, data=b))

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(&gt;F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>genotype</td>
<td>4</td>
<td>13331</td>
<td>3333</td>
<td>36.22</td>
</tr>
<tr>
<td>nutr</td>
<td>1</td>
<td>1053</td>
<td>1053</td>
<td>11.44</td>
</tr>
<tr>
<td>genotype:nutr</td>
<td>4</td>
<td>144</td>
<td>36</td>
<td>0.39</td>
</tr>
<tr>
<td>Residuals</td>
<td>40</td>
<td>3681</td>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>
```

anova(lm(weight ~ genotype * nutr, data=b))
Graphics ➔ Model

• In the previous example, we used graphics to iteratively build up a model - a la stepwise regression!

• But: here interested in gestalt, not accurate prediction, and must remember that this is just one possible model

• What about model ➔ graphics?
If we model first, we need graphical tools to summarise model results, e.g. post-hoc comparison of levels

We can do better than SAS! But it’s hard work: effects, multComp and multCompView

Rich research area
ggplot(b, aes(x=genotype, y=weight))
+ geom_hline(intercept = mean(b$weight))
+ geom_crossbar(aes(y=fit, min=lower,max=upper),
 data=geffect)
+ geom_point(aes(colour = nutr))
+ geom_text(aes(label = group), data=geffect)
Summary

• Need to move beyond canned statistical graphics to experimenting with new graphical methods
• Strong links between graphics and models, how can we best use them?
• Static graphics often aren't enough
Questions?