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Abstract

This paper describes an R package which produces tours of multivariate data. The
package includes functions for creating different types of tours, including grand, guided,
and little tours, which project multivariate data (p-D) down to 1, 2, 3, or, more generally,
d (≤ p) dimensions. The projected data can be rendered as densities or histograms,
scatterplots, anaglyphs, glyphs, scatterplot matrices, parallel coordinate plots, time series
or images, and viewed using an R graphics device, passed to ggobi, or saved to disk.
A tour path can be stored for visualisation or replay. With this package it is possible
to quickly experiment with different, and new, approaches to tours of data. This paper
contains animations that can be viewed using the Adobe Acrobat pdf viewer.

The tourr package is available on CRAN.

Keywords: grand tour, guided tour, projection pursuit, little tour, local tour, correlation tour,
visualization, statistical graphics, visual data mining.

1. Introduction

Many of us still struggle to explore multivariate data. We would like a magic button to tell
us about all of the structure in the data. The closest we have to a magic button right now,
at least for real-valued data, is the tour, which shows a smooth sequence of projections of
high-dimensional data. The tour is most useful when looking for clusters, outliers, non-linear
dependence, and to get an overview of the types of structures present in multivariate data.

The tour gets us beyond the single static data projection produced by many statistical meth-
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ods like principal component analysis, linear discriminant analysis, multidimensional scaling,
projection pursuit or independent components analysis (Johnson and Wichern 2002). With
the tour the data analyst sees many data projections, including ones revealing many different
aspects of the data and how these are related to each other.

There have been numerous implementations of tours, although few are accessible to the casual
user, and none of them readily encourages experimentation. The earliest implementation is
described in Buja, Hurley, and McDonald (1986), from which our work mostly derives. Tierney
(1991) coded a grand tour in XLispStat. Carr, Wegman, and Luo (1996)’s ExplorN has a
grand tour in which k-D data projections can be displayed as a scatterplot matrix or parallel
coordinates. A grand tour is programmed in DAVIS (Huh and Kim 2002). GGobi (Swayne,
Lang, Buja, and Cook 2003; Swayne, Temple Lang, Cook, Buja, Wickham, Lawrence, and
Hofmann 2001) has a grand, guided, and correlation tour, as well as a tour with manual
controls. Different variations of the grand tour algorithm are used in each implementation.
The one used in ggobi, and also the tourr package, is called the geodesic random walk method.
It is documented in several places: originally in Buja and Asimov (1986), and more recently
in Buja, Cook, Asimov, and Hurley (2005); Cook, Lee, Buja, and Wickham (2008). Articles
describing the application of tours to particular types of problems include Wegman and Luo
(1997), Symanzik, Wegman, Braverman, and Luo (2002), Wilhelm, Wegman, and Symanzik
(1999), Cook and Swayne (2007), and Cook (2009).

This paper presents the tourr package, which provides a tool-kit of methods that allow an
assembly of all the tours described in the literature to date, and facilitates development of
new tour methods specialized for the needs of a particular problem. Currently, the focus of
the package is on providing a testbed for tour research, but it also provides a user-friendly
layer, and prototype GUI for using tour methods on your data.

Section 2 defines the tour and the three components that define a given tour. The three
sections describe each of these components in turn: Section 2.1, the tour path; Section 2.2
display methods; and Section 2.3 the data. As well as displaying the results of a tour dynam-
ically, tours can also be saved, replayed and visualized. Section 3.3 shows what you can do,
and other options are described in Section 3. Section 4 explains how to extend the package.
Finally, we conclude with our plans for future work and suggest interesting avenues of research
into tours in Section 5.

2. The tour method

We define a tour to consist of the following three components:

• a data matrix (n× p), with real-valued elements,

• a tour path that produces a smooth sequence of projection matrices (p× d), and

• a display method that renders the projected data.

This allows us to recombine tours to produce new ones. It also allows us to better understand
how existing tours relate to one another, and to see where there are gaps in the current design
that could be filled with new methods.

The structure of the tourr package reflects this construction of the tour: to create a tour
we need to combine a dataset with a type of tour path and display method. The code style
follows these components also:
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tour_function(data, tour_path, display_method)

The tour_function packages the tour. It is, currently, either a real-time animation, animate,
or output to file, render. The first argument to the function is the dataset, the second
argument selects a tour path, and the third sets the display type.

Figure 1 shows three different tours of the flea dataset (Lubischew 1962): (1) a 2-D tour
displayed in a scatterplot, (2) a 3-D tour displayed with simulated depth, and (3) a 4-D tour
displayed in a parallel coordinates plot. (If you are viewing this paper in Adobe Acrobat, you
can click on each image to see the first few seconds of each tour.) The tours were generated
using this code:

animate(flea[, 1:6], grand_tour(d = 2), display = display_xy())

animate(flea[, 1:6], grand_tour(d = 3), display = display_depth())

animate(flea[, 1:6], grand_tour(d = 4), display = display_pcp())

Figure 1: Three tours (from left to right): a 2-D tour displayed with a scatterplot, a 3-D tour
displayed with simulated depth, and a 4-D tour displayed with a parallel coordinates plot. (If
you are viewing this in Acrobat, click on each image to see a few seconds of the tour.)

The different display methods are described in detail in Section 2.2. Shortcuts to the full syn-
tax are typically used, e.g. using animate_xy instead of animate allows the display argument
to be dropped.

A tour path is constructed by a function, with the arguments controlling the movement
through the space. The grand_tour, used above, takes a random walk on the space of
projections. Here are two more examples:

animate_xy(flea[, 1:6], guided_tour(index = holes))

guides the tour towards projections where there is a “hole” in the center of the distribution,
and

animate_xy(flea[, 1:6], little_tour(d = 2))
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steers the views through every pair of variables. More explanation of tour paths is given in
the Section 2.1.

2.1. Tour path

The tour path is made up of two parts: the interpolator smoothly interpolates between pairs
of projections produced by the basis generator. The smooth interpolation is an important
part of the tour as it ensures that the data appears to move smoothly from one projection to
the next.

Checks in the code ensure that subsequent bases in the sequence are at least a small distance
apart, and terminates the tour when it is done or in the case of a guided tour, has reached a
(local) maximum.

Generators

The tourr package includes five generators: the grand tour, the guided tour, the planned tour,
the dependence tour and the local tour. Internally, each generator consists of a function with
two arguments, the current projection matrix (which is NULL for the first projection) and
the data.

1. The grand_tour (Asimov 1985; Buja and Asimov 1986) picks a new p × d projection
matrix at random.

The grand tour provides a curve filling the space of projections, ensuring thereby to
(eventually) show every possible projection of the data. It is useful for getting a com-
prehensive overview of a dataset, but even for a moderate number of dimensions it can
take a long time to see everything.

A variant on the grand tour is the frozen_tour: it picks a new target projection at
random, while holding some variables constant.

2. In the guided_tour (Cook, Buja, Cabrera, and Hurley 1995), instead of picking a new
projection completely at random, we pick one that is more interesting. Over time,
this leads to picking projections that are closer to the current projection, so that we
eventually converge to a single maximally interesting projection, in a spirit similar to
simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983).

The guided tour is a dynamic form of projection pursuit (Huber 1985; Friedman and
Tukey 1974) with the difference that instead of just seeing the final “best” result, we
see all of the interesting local maxima on the way. Like projection pursuit, we need to
define what we mean by interesting, by describing a mathematical index (e.g. Lee, Cook,
Klinke, and Lumley (2005)) that quantifies the interestingness of a data projection. The
tourr package comes with four indices:

• holes (holes)

• central mass (cm)

• lda (lda_pp)

• pda (pda_pp)
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Each of these indices takes a n × d data matrix as input and returns a single number
as output. Section 4.3 describes how to write new indices.

Like the grand tour, the guided tour can also be frozen to produce the frozen_guided_tour.

3. The planned_tour is the most constrained tour: we already know where we want to
go and simply cycle through a pre-specified set of frames. The planned tour is most
useful if you have a sequence of projections saved by an earlier tour for later replay: see
Section 3.3 for details.

This idea is also the basis for the little_tour. The little tour is a special case of
a planned tour that cycles through all axis parallel projections of dimension d, i.e. it
provides a smooth sequence between views of all d-dimensional sets of variables in the
data.

4. The dependence_tour combines n independent 1-D tours. This generator has a sin-
gle argument, a numeric vector that specifies which 1-D tour each variable should be
assigned to. For example, c(1, 1, 2, 2) specifies that the first two variables will be
displayed with a 1-D tour on the first axis, and the second two with a 1-D tour on the
second axis.

The correlation tour (Buja et al. 1986) is the two dimensional special case of this method.
It corresponds to canonical correlation analysis in the same way as the grand tour is
analogous to PCA. Similarly, the dependence tour corresponds to generalized canonical
correlation analysis.

5. The local_tour alternates between a specified starting position and nearby random
projections. This allows us to inspect the local neighborhood of a projection.

Interpolator

All of the generators currently rely on geodesic interpolation as the means for a smooth
interpolation between planes. This method was first described by Asimov (1985) and Buja
and Asimov (1986), and is discussed in more detail by Cook et al. (2008) and Buja, Cook,
Asimov, and Hurley (2004); Buja et al. (2005). Other methods of interpolation are Givens
and Householder rotations, but these methods interpolate between frames rather than planes,
resulting in within-plane rotation, which makes them useful only for special purposes. They
were available in XGobi (Swayne, Cook, and Buja 1992) but have not yet been implemented
in tourr.

Some background: Because a projection of p-D data onto d (< p) dimensions must ultimately
be rendered in terms of d axes (Cartesian or parallel), a tour is internally represented by a
path of so-called “d-frames” in p-space, that is, orthonormal p×d matrices where the columns
represent the projection vectors. Each d-frame spans a unique “d-plane” (we use “plane” also
when d > 2), but each d-plane can be spanned by many d frames, all of which are rotations
and reflections of each other within the d-plane. The space of d-frames is called a Stiefel
manifold, whereas the space of d-planes is called a Grassmann manifold.

An important goal of any tour must be to avoid unnecessary rotation within the plane because
any two frames that span the same plane will generate d-D projections of the p-D data with
equivalent information. In order to get a truly new view of the data “from a different side”,
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we should move the plane, not just rotate it within itself. Motion that completely avoids such
within-plane rotation is indeed generated by the above mentioned geodesic interpolations. In
this technical sense geodesic interpolation is optimal.

2.2. Display methods

The display methods produce a visual rendering of the tour: a visualisation of the projected
data. There are nine methods for displaying the tour, which can be classified based on the
dimensionality of the projection:

• 1-D:

– animate_dist (histogram, average shifted histogram, density plot)

– animate_image (image plot)

– animate_ts (time series)

• 2-D:

– animate_xy (scatterplot)

• 3-D:

– animate_stereo (anaglyphs)

– animate_depth (3-D depth cues)

• k-D:

– animate_andrews (Andrews curves)

– animate_faces (Chernoff faces)

– animate_pcp (parallel coordinates)

– animate_scatmat (scatterplot matrix)

– animate_stars (star glyphs)

The tour path described earlier has no sense of time, it just provides paths over the Grassmann
manifold. The animation methods provide temporal control, using two parameters: frames
per second, fps, and angular velocity, aps. Increasing fps will produce smoother motion (up
to a limit imposed by the processing and drawing speed on your computer). Changing aps

changes the speed of the tour along the tour path.

1-D

A 1-D projection of the data can be thought of like the first principal component in principal
component analysis, or even a the linear combination of variables forming a regression equa-
tion. 1-D data is typically displayed as a histogram, average shifted histogram (Scott 1985)
or kernel density estimate (Scott 1995). The tourr package provides the three displays within
the animate_dist function and produces displays like those in Figure 2. These displays are
centered by default, so that the density does not wander to the left and right.

Two special applications also fall in to the 1-D category, multivariate spatial data, using
animate_image, and multivariate time series using animate_ts. Wegman, Poston, and Solka
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Figure 2: Three visualizations of a 1-D projection. From left to right: a density plot, an
average shifted histogram and a histogram. In each display the projection coefficients, that
range between -1 and 1, are displayed as line segments underneath the plot.

(2001) uses the term pixel tour for the tour on spatial data. This tour assumes the data
has two spatial dimensions, which remain fixed and do not enter into the tour, and multiple
measurements at each spatial location. A 1-D tour is generated by taking projections of
the multivariate measurements. The value of the projected data at each spatial location is
converted to a color code, which displays as an image. Wegman et al. (2001) used this to
examine photograms of petroglyphs and satellite imagery of suspected land mine sites. The
time series tour is similarly done, but it is not yet implemented in the package.

2-D

For 2-D projections a scatterplot is used. This was the original approach used when the tour
was defined (Buja and Asimov 1986; Buja et al. 1986). Point colors and symbols can be set
using the standard pch and col parameters.

3-D

It is difficult to show a 3-D object on a 2-D display. The tourr package provides two ap-
proaches:

• Anaglyphs, with display_stereo. You’ll need red-blue glasses to use this tour. Anaglyphs
were used first used to visualize results of the tour by Carr, Nicholson, Littlefield, and
Hall (1987).

• Simulated depth cues, with display_depth. This display uses depth cues of occlusion
(closer points occlude further away points), size (closer points are bigger) and saturation
(distant points are hazier and less saturated). The illusion of depth is less convincing
than with anaglyphs, but it does not require any special equipment.

It is possible to do better if specialized hardware is available. For an example see Nelson,
Cook, and Cruz-Neira (1999).

k-D methods

When we have k-D projections, we can use any of the following methods to display the k-d
projected data:
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• Parallel coordinates (Wegman 1990; Inselberg 1985) with display_pcp. Parallel coor-
dinates were used to display tour results in CrystalView (Wegman and Luo 1997).

• Andrews curves (Andrews 1972) with display_andrews.

• Scatterplot matrices, display_scatmat. Also used in CrystalView.

• Glyph based displays: stars (display_stars) and Chernoff faces (faces). We have
not seen tours used with the glyph based methods (stars and faces), but it seems like a
natural way to overcome the ordering problem implicit with a choice of single projection.

It is very easy to hook up any additional method of data display, particularly if it is already
implemented in R.

Animations

The animate_** functions use animate() to produce the tour animations. render() has
three arguments to control the tour, the data, the tour_path and display, and and further
arguments to control the speed, frame rate, length of the tour and data scaling.

The render function, alternatively, can be used to save the plots to files, as was done for the
animations included in this paper. It takes similar arguments to the animate function with
the additional specification of the graphics device to be used, for example pdf. We created
the animations in this paper by rendering the plots to pdf files and using the Latex animate
package to glue these together. This is also useful if you want to use high-quality graphics
to create the movie for presentation-quality display, for example using the ggplot2 graphics
(Wickham 2009) package.

2.3. Data

Most of the tour methods assume that you are working on a matrix or data frame of p
continuous variables. By default these variables are scaled to each have range [0, 1], but if
your variables are measured on a common scale already, you can turn this off by setting
rescale = FALSE. Optionally, the data can also be sphered prior to display with the tour.
Sphering rotates and scales the data so that it has a diagonal variance-covariance matrix -
this is useful because it removes typically obvious correlation effects and makes it easier to
see subtler non-linear patterns.

3. Options

3.1. Frozen geodesics

The interpolation has an additional component that allows the coefficient of some variables
in a projection to be “frozen”. These were used in XGobi (Swayne, Cook, and Buja 1998),
but have not previously been described in the literature.

In a frozen interpolation, one or more of the variables have a fixed coefficient in the correspond-
ing row of the projection matrix. Interpolation then occurs within the subspace generated by
this restriction. In practice, this is a simple modification of the interpolation algorithm, given
by the following:
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1. A matrix of frozen values, the freezer matrix. This is a matrix of the same shape as
the projection matrix, containing numbers for frozen variables, and missing values for
warm variables (variables that can vary freely). The columns of the freezer matrix must
have norm less than 1.

2. A freeze operation which zeroes out the frozen variable values in the input projection
matrix.

3. A thaw operation, which thaws the input projection matrix by replacing the 0’s of
the frozen variables with the values from the freezer matrix, appropriately scaling the
columns to have norm 1.

The frozen geodesic interpolation is then just the regular geodesic interpolation plus:

1. Freeze the current basis, and freeze the target basis.

2. Perform the geodesic interpolation between the two frozen bases.

3. Thaw each resulting interpolated basis.

For example:

F =


— —
— —

0.5 0.5
— —

 A =


0.91 −0.08

−0.12 0.75
0.06 −0.44

−0.39 −0.49

 freeze(A,F) =


0.91 −0.08

−0.12 0.75
0 0

−0.39 −0.49



F =


— —

0.6 0.6
— —
— —

 B =


0.91 −0.08

0 0
−0.12 0.75
−0.39 −0.49

 thaw(B,F) =


0.73 −0.07
0.60 0.60

−0.10 0.67
−0.31 −0.44


3.2. Optimization

The tourr package provides three methods for searching projection space for more interesting
projections:

• search_better, search_better_random: inspired by simulated annealing, these meth-
ods have been modified for better behavior in the interactive case.

• search_geodesic: a new method for stochastic coordinate-wise search.

Properties of an optimization algorithm suitable for visual monitoring include:

• Monotonicity: Index values for projections in the interpolation between starting and
target bases increase monotonically. If not, the optimization will stop and search for a
new target.

• Variable Step-Size: Two mechanisms for actually attaining the maximum are needed:
(1) step size of the tour is reduced as a maximum is approached, to avoid overshooting
of peak. (2) Similar to simulated annealing, the search neighborhood is decreased over
time, so that there is a better chance of reaching the nearest maximum.



10 tourr

• Local Stopping Criterion: A mechanism exists that allows to jump out of a local maxi-
mum, if desired. When this happens the search neighborhood is expanded again.

3.3. History

Tour paths can be saved and replayed. The function save_history() works like animate

and render except that it returns a 3-D array of projection matrices, instead of displaying
data projections on screen. The planned tour can then be used to replay the tour, and even
investigate the tour path. Figure 3 shows an example. The code:

f1 <- save_history(flea[, 1:6],grand_tour(d = 1), max_bases = 10)

render(flea[, 1:6], planned_tour(f1), display_dist(), frames = 50,

"pdf", "tour1d-animation.pdf", width = 4, height = 4)

f1interp <- interpolate(f1)

generates a tour path, and saves it in the data structure f1interp. It is used to produce the
1-D tour in the left plot of Figure 3. The tour path can be viewed in the full 6-D space using
a tour in ggobi, using:

x <- path1d_ggobi(f1)

ggobi(x)

# Brush path points large, and bright, and supporting sphere small, dull

This is displayed in the middle plot of Figure 3. The light grey points are points on the
surface of a 6-D unit-radius sphere, which have been added to give some context to the tour
path (orange). The tour path is a track on the surface of the sphere. The example used here
is a short tour path, but key components can be seen: each time the path takes a sharp turn a
new geodesic interpolation is used to move to a new target basis. The path makes reasonably
rapid progress over the surface of the sphere. With a long tour path we would expect to see
that the surface of the sphere is covered by this path.

The tour path can also be visualized in a low-dimensional representation produced by multidi-
mensional scaling (right plot of Figure 3). The distance between two planes can be measured
in an almost unique way (up to a choice of units) by forming the Euclidean length of the d
“principal angles” between the two planes: D(P1, P2) = (θ21 + ...+ θ2d)1/2. There is, therefore,
a sense of “angular distance” between two planes, and such distances can be used to visualize
the path taken by a tour, for example, by mapping the path with multidimensional scaling.
The code used to produce this is:

d <- history_dist(f1interp)

ord <- as.data.frame(MASS::isoMDS(d)$points)

qplot(V1, V2, data = ord, geom="path") +

coord_equal() + labs(x = NULL, y = NULL)

Tour paths can be saved as variables, but re-using these variables will not replay the same
tour as the path is stochastic. To re-construct a path, either set the random seed, or, better,
save the sequence of projections generated by tour path and then replay it with the planned
tour:
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Figure 3: Visualizing a tour path to examine the tour’s coverage of the projection space. The
left plot shows the 1-D tour, animated upon clicking. The middle plot shows the sequence
of 1-D projection vectors (orange) on a 6-D sphere (grey) that defines the tour path, itself
viewed in a tour. The right plot shows a 2-D multidimensional scaling representation of the
tour path.

gt <- grand_tour(d = 4)

animate_pcp(flea[, 1:6], gt)

animate_pcp(flea[, 1:6], gt) # Will take a different path!

set.seed(1410)

animate_pcp(flea[, 1:6], gt)

set.seed(1410)

animate_pcp(flea[, 1:6], gt) # Will take the same path.

path <- save_history(flea[, 1:6], gt, 10)

animate_pcp(flea[, 1:6], planned_tour(path))

animate_pcp(flea[, 1:6], planned_tour(path)) # The same path again

Other methods for visualizing a sequence of projections as part of a tour path are described
in Section 3.3.

4. Extending the package

The tourr package uses a layered design to make it possible to customize almost every aspect
of the tour. This means you need to learn about the existing abstractions, for example,
closures. An explanation follows, along with examples of possible extensions.

In tourr, closures are used for three purposes:

• To allow functions to maintain the state between subsequent calls.

• To create functions that meet the requirements for basis generators (two arguments:
current projection and data matrix) and index functions (one argument: a matrix of
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the projected data) while still being able to control aspects of their behavior with other
parameters.

• To create simple “objects” to describe the different components of the display of projec-
tions.

4.1. Closures

A closure is a function written by another function. Closures are so called because they
enclose the environment of the parent function, and can access all variables and parameters
in that function. This is useful because it allows us to have two levels of parameters. One
level of parameters (the parent) controls how the function works. The other level (the child)
does the work. The following example shows how can use this idea to generate a family of
power functions. The parent function (power) creates child functions (square and cube) that
actually do the hard work.

power <- function(exponent) {

function(x) x ^ exponent

}

square <- power(2)

square(2) # -> [1] 4

square(4) # -> [1] 8

cube <- power(3)

cube(2) # -> [1] 8

cube(4) # -> [1] 64

The ability to manage variables at two levels also makes it possible to maintain the state
across function invocations by allowing a function to modify variables in the environment
of its parent. Key to managing variables at different levels is the double arrow assignment
operator <<-. Unlike the usual single arrow assignment (<-) that always works on the current
level, the double arrow operator can modify variables in parent levels.

This makes it possible to maintain a counter that records how many times a function has
been called, as the following example shows. Each time new_counter is run, it creates an
environment, initializes the counter i in this environment, and then creates a new function.

new_counter <- function() {

i <- 0

function() {

# do something useful, then ...

i <<- i + 1

i

}

}
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The new function is a closure, and its environment is the enclosing environment. When the
closures counter_one and counter_two are run, each one modifies the counter in its enclosing
environment and then returns the current count.

counter_one <- new_counter()

counter_two <- new_counter()

counter_one() # -> [1] 1

counter_one() # -> [1] 2

counter_two() # -> [1] 1

For more details about environments in R, see Fox (2002).

4.2. Writing a new tour path

A tour path is composed of a basis generator and an interpolation algorithm. The tourr
package provides geodesic interpolation. Writing a new basis generator is all that is required
to produce a new tour. We will use the grand tour generator as an example:

grand_tour <- function(d = 2) {

generator <- function(current, data) {

if (is.null(current)) return(basis_init(ncol(data), d))

basis_random(ncol(data), d)

}

new_geodesic_path(generator, name = "grand")

}

basis_random <- function(n, d = 2) {

mvn <- matrix(rnorm(n * d), ncol = d)

orthonormalise(mvn)

}

basis_init <- function(n, d) {

start <- matrix(0, nrow = n, ncol = d)

diag(start) <- 1

start

}

There are three functions, the first defines the tour, and the other two define the basis gen-
eration functions. The key components are:

• The basis generator is defined inside the tour path, and passed to a function,
new_geodesic_path, that wraps the generator in the geodesic interpolator to supply a
series of piece-wise geodesics.

• The generator takes two arguments: the current projection and the data to be pro-
jected. The data argument is currently only used by the guided_tour in order to
compute the projection pursuit index.
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• The generator deals with a special case, when the current projection is NULL. This occurs
when the tour is started for the first time, and there is no current projection. In this
case it uses the special basis generator, basic_init, which assigns the first d variables
to the first d output dimensions.

• The basis generators, basis_random and basis_init, are separate functions, which
allows their use in other types of tours.

4.3. Writing a new index for the guided tour

The guided tour requires a method for calculating how interesting a particular data projection
is. If the index depends only on the projected data, then the code is simple, for example, the
code for the holes index:

holes <- function(mat) {

n <- nrow(mat)

d <- ncol(mat)

num <- 1 - 1/n * sum(exp(-0.5 * rowSums(mat ^ 2)))

den <- 1 - exp(-d / 2)

num / den

}

If the index requires additional arguments, the function needs to take those arguments and
generates the index function using the closure style discussed above. The following code shows
how the implementation of the LDA index. Like linear discriminant analysis, the LDA index
is maximized by a projection where the classes (two or more) are the most separated. Thus,
it needs a vector of class information, a class label for each row of the data matrix. These are
passed to lda_pp which then generates the actual index function. The index function needs a
single argument, mat, and is implemented as a closure, which means that when cl is referred
to, it looks in the environment of the top-level function.

lda_pp <- function(cl) {

if (length(unique(cl)) == 0)

stop("ERROR: You need to select the class variable!")

if (length(unique(cl)) == 1)

stop("LDA index needs at least two classes!")

function(mat) {

fit <- manova(mat ~ cl)

1 - summary(fit, test = "Wilks")$stats[[3]]

}

}

4.4. Writing a new display method



Journal of Statistical Software 15

A display method is a list of four functions:

• init(data). This function is called once, before all the other functions, and is typically
used to determine scales.

• render_frame(). Create a new plot device with appropriate dimensions.

• render_transition(). On the Windows graphics device, it’s much faster to reuse the
existing plot, rather than creating a new one from scratch. This method should be used
to clear the existing plot, typically by drawing a white rectangle over everything.

• render_data(data, proj, geodesic): render the projected data. It is the responsi-
bility of this method to project the data, typically by computing data %*% proj. This
method should also draw axes, if possible

We only need these four functions because other infrastructure takes care of rendering to
screen (using the most efficient method for that platform) and saving to disk.

5. Conclusions

In summary, this package is designed to make it easier to use and develop tour methods for
high-dimensional data analysis. Natural extensions of the package would include new display
types, interpolation algorithms, projection pursuit indices and optimization methods, and
tours that help analyze large p, small n data. By treating the tour path like data, we can
readily examine the coverage and patterns in the way that the algorithm operates on the
space of all projections. This package provides exciting new possibilities for tour research.
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