Graphical Grammar

Brian Vanover Xuan Yang 01/19/2011

Build a plot

- Many different types of plots.
- Convert data units to physical units
- Scale and Statistically transform the data
- Combine graphical objects from 3 sources
 - 1. Data
 - 2. Scales and Coordinate System
 - 3. Plot Annotations (Title, background)

See Example Can you think of other ways to represent this information graphically 7

Faceting

- "Produces small multiples showing different subsets of the data."
- Scaling occurs in three parts
 - 1. Transforming
 - Occurs before stat transformation
 - Only necessary for non-linear scales
 - 2. Training
 - Combines ranges of datasets to get complete range
 - \succ Locally applied scales \rightarrow Meaningless comparisons
 - 3. Mapping
 - Map data values to aesthetic values
 - Easier to map within each facet as opposed to splitting final

Faceting by Class. Discuss the intuitive process used to build this plot.

Components of Layered Grammar

- Default Dataset, Set of mappings from variables to aesthetic
- One or more layers each having
 - One geometric object, statistical transformation, position adjustment, and dataset/set of aesthetic mappings
- One scale for each aesthetic mapping used
- A coordinate system
- The facet specification

Benefits/Characteristics

- Components are independent
- Layer component determines physical representation of data
- Grammar makes iterative plot updates easier
 - Suggests ways plots can be changed
 - Promotes creation of new/customized graphics

An Example of Layers and Their Defaults

```
ggplot(feb13, aes(ntot, ncancel))
+ geom_point(data = subset(feb13, origin == "IAH"), size = 7, colour =
alpha("red", 0.5))
+ geom_point()
```

+ geom_text(data = subset(feb13, origin == "IAH"), aes(label = origin), hjust = -.5)

+ geom_smooth(method = "Im", se = T) + labs(y = "Number of flights cancelled", x = "Total number of flights")

Component Characteristics

- Data & Mapping
 - Can construct graph applicable to multiple dataset
 - Specify which variables are mapped to which aesthetics
- Statistical Transformation
 - Transforms data, typically by summarization
 - Must be location-scale invariant
- Geometric Object
 - Control type of plot created
 - Classified by dimensionality
 - Every geom has default statistic vice versa
 - Can only display certain aesthetics

Can you guess the accompanying default geoms for these given statistics?

- 1. Bin
- 2. Boxplot
- 3. Identity
- 4. Contour
- 5. Smooth

Characteristics Cont.

- Position Adjustment
 - Tweak position of geom objects that obscure others
- Scales
 - Controls mapping from data to aesthetics
 - Need one scale for each aesthetic used in a layer
 - Consists of a function, its inverse, and set of parameters
- Coordinate System
 - Maps position of objects onto plane of plot
 - Affect all position variables simultaneously and change appearance of geometric objects
 - Controls how axes and gridlines are shown
- Faceting

Hierarchy of Defaults

- Describing every component every time is a poor use of time
- Defaults simplify work of plotting
- Intelligent default
 - Need only specify one geom or stat
 - Cartesian coordinate system
 - Scales defaulted according to type of variable and aesthetic
 - Position-based mapping
- Qplot
 - Assumes multiple layers use same data/aesthetic
 - Defaults to scatterplot
 - Mimics syntax of R *plot* function

Intelligent Default and Qplot

We can construct the same graphic with the two following codes:

qplot(carat, price, data = diamonds, colour = cut, geom = "smooth")

plot3 <- ggplot(data = diamonds, mapping = aes(x = carat, y = price, colour = cut)) + layer(data = diamonds, mapping = aes(x = carat, y = price, colour = cut), geom = "smooth", position = "identity", stat = "smooth") + scale_x_continuous() + scale_y_continuous + coord_cartesian()

Implications of Layered Grammar

- Histograms
 - Default binwidth, and the choice of bins
 - Y-position not present in original data ..count..
- Polar Coordinates
- Transformations
 - 1. Data
 - 2. Scales
 - 3. Coordinate System

Transforming the Data

Transforming the Scales

Transformed Data

Transformed Scales

Transforming the Coordinate System

50000 -40000 cut Fair 30000 count Good Very Good Premium 20000 -Ideal 10000 -0 -.....

Cartesian Coordinates

Polar Coordinates

m

Common Mistakes; Possible Solutions

- Too many variables
 - Hard to see relationships between more than three variables, two position and one other
 - Warn the user and suggest alternatives such as faceting
- Overplotting
 - Prompts incorrect conclusions about distribution
 - Supplement plot with contours or color by density
- Alphabetical Ordering
 - Categorical variables often ordered alphabetically
 - Ordering by some property of data more useful
- Polar Coordinates
 - Humans better at judging length than angle or area
 - Difficult to judge an angle for objects with small radius

What are some other common mistakes?

Conclusions

- Aim is to "bring together in a coherent way things that previously appeared unrelated and which also will provide a basis for dealing systematically with new situations."
- Layered grammar allows for more interchangeability, faster duplication, easier exploration of new graphics
- Grammar not so strong in area plots
 - Development of subgrammar
- Interactive plots
 - Binwidth slider
 - Speed
- Grammar is powerful and useful, but more specification of subgrammars and measures to ensure good graphics are needed

The Good and Bad of Graphics

