
Learning SAS
Hadley Wickham

Outline

• Intro & data manipulation basics

• Fitting models x2

• Writing macros

• No graphics (see http://support.sas.com/
techsup/sample/sample_graph.html for why)

Today’s outline

• SAS philosophy

• Intro to the SAS application

• Data import and export

• Modifying and subsetting data

“You must realize that R is written by experts in
statistics and statistical computing who, despite
popular opinion, do not believe that everything in
SAS and SPSS is worth copying. Some things done
in such packages, which trace their roots back to
the days of punched cards and magnetic tape when
fitting a single linear model may take several days
because your first 5 attempts failed due to syntax
errors in the JCL or the SAS code, still reflect the
approach of "give me every possible statistic that
could be calculated from this model, whether or
not it makes sense". The approach taken in R is
different. The underlying assumption is that the
useR is thinking about the analysis while doing it.”
– Douglas Bates

• Four components:

• editor

• log

• output

• navigator

• Refer back to the following slides

SAS application

Editor

Log

Navigator

Navigator

Log

• Shows you any error messages

• Make sure to always have the log visible!

• It’s the only way you get any feedback

Editor

• Enter commands in here, doesn’t run
automatically (like R)

• Select, and press F8 to run

• Comments begin with *

• Need a ; at the end of every statement

First code

• ods listing close;

• ods html;

• (Makes the default SAS code a little bit
prettier. You will probably want to use this
every time you use SAS)

Data

• Always keep your data in a standard format
(I recommend csv)

• Avoid vendor lock in

• Imagine you want to look at your data again
in 10 or 20 years time

• Only use program specific data structures to
cache slow operations

R

• You should be familiar with read.csv by now

• The opposite is write.csv

• df <- read.csv(file.choose())

• write.csv(df, "c:/path/to/file.csv")

SAS

• proc import out=df
datafile="c:/path/to/file.csv"
dbms = csv;
run;

• proc export data=df
outfile="c:/path/to/file.csv"
dbms = csv;
run;

SAS
• Or use the menus

• A few other tips:

• If the file is open in Excel, SAS
won’t open it

• Sometimes SAS will just refuse to
open a file for no good reason. If
that happens try switching file
formats (eg. to xls)

How to get file paths

• Right-click | properties

• Can select it and copy
and paste

• But won’t work in R:
Need to replace \ with /
or \\

• Instead, you can use
basename(file.choose())

Your turn

• Load reshape library, and export the
french fries data

• Import it into SAS

• Export it out of SAS

• Import it back into R

• Is it still the same? (look at str)

Uh oh!

• There’s a problem with missing values: R uses
NA, SAS uses .

• The easiest way to fix this is from R

• Both read.csv and write.csv have a na
argument, set it to "." for SAS input and
output

• write.csv(..., na =".")

• read.csv(..., na=".")

Working directories

• You may have noticed you had to write out a
directory name an awful lot of names in that
last example

• Both R and SAS have a way to avoid that,
called working directories

• Lets you specify just the file name

• Always use when you’re working on a
project!

R

• Before:

• df <- read.csv("c:/path/to/file/in.csv")

• write.csv(df, "c:/path/to/file/out.csv")

• After

• setwd("c:/path/to/file/")

• df <- read.csv("in.csv")

• write.csv(df, "out.csv")

SAS
• Before:

• proc import out=df
datafile="c:/path/to/file/in.csv" dbms = csv; run;

• proc export data=df
outfile="c:/path/to/file/out.csv" dbms = csv; run;

• After

• x ' cd "c:/path/to/file/" '

• proc import out=df
datafile="in.csv" dbms = csv; run;

• proc export data=df
outfile="out.csv" dbms = csv; run;

Your turn

• Create a new directory called frenchfries,
and set working directories in R and SAS to
it

• Now, export from R, import into SAS,
export out of SAS and import in R

• Make sure to adjust for missing values!

Modifying data

• Our first SAS programming!

• Using the data step

• data output_dataset_name;

• set input_data_set_name;

• run;

Using help

• It’s a bit tricky! Don’t EVER use the search

• You have to navigate to what you want:

• Data: SAS products | Base SAS | SAS
Language concepts | DATA Step concepts

• We’ll talk about more places as we get to
them

Data in SAS

• R processes data by columns, SAS processes
by rows

• In the data step we can do all sorts of
complicated things, but we’re just going to
stick with simple variable transformations

x 'cd "C:\Documents and Settings\Administrator\Desktop"'
proc import out=ss

datafile="server-survey-sas.csv" dbms = csv; run;

data ss;
set ss;
age = 2007 - birth_yr;
lifeworked = yrs_experience / age;

group = "unknown";
if (age ^= . & age <= 20) then group = "teenage";
if (age > 20 & age <= 30) then group = "20s";
if (age > 30 & age <= 50) then group = "middle-aged";
if (age > 50) then group="elderly";

run;

Your turn

• Run that code for yourself

• Experiment with transformations

• Read the help on the data step:
SAS products > base SAS > SAS language
concepts > DATA Step concepts > DATA
step processing

Subsetting

• Similar to R

• Three ways:

• Create new data set

• Use subset in procedure x2

data teenagers;
set ss;
where group = "teenage";
run;

proc print data=teenagers;
run;

proc print data=ss;
where group eg "teenage";
run;

proc print data=ss(where=(group = "teenage"));
run;

Differences from R

• ^= instead of !=

• x in (1 4 5) instead of x %in% c(1,4,5)

• Missing values equal negative infinity

Your turn

• Practice your subsetting!

