
Simulation
Hadley Wickham

Aims

• Learn how to simulate data to:

• Test your statistical intuition

• Perform power tests

• Experiment with a new technique on
known data

• Learn how to use functions to reduce
duplication

Outline

• Basics of simulation

• Don’t repeat yourself

• Exploring some theorem you should have
seen before

• Exploring the behaviour of a t-test

Basics of simulation

• Want to:

• generate random numbers from known
distribution

• want to repeat the simulation multiple
times

Generating random
numbers

• runif (uniform), rpois (poisson), rnorm
(normal), rbinom (binomial), rgamma
(gamma), rbeta (beta)

• First argument for all is n, number of samples
to generate

• Then parameters of the distribution
(always check that the distribution is
parameterised the way you expect)

Your turn

• Generate 100 numbers ~ N(0, 1)

• Generate 50 numbers ~ N(10, 5)

• Generate 1000 numbers ~ Poisson(50)

• Generate 10 numbers ~ Beta(0.1, 0.1)

• Generate 30 numbers ~ Uniform(0, 10)

Repetition

• Use the replicate function

• replicate(n, expression)

• replicate(10, mean(rnorm(100)))

• qplot(replicate(100, mean(rnorm(10))),
type="histogram")

Your turn

• Plot histogram of:

• 100 x mean of 10 N(0,1)

• 1000 x mean of 10 Unif(0, 10)

• 1000 x mean of 100 Unif(0, 10)

• 100 x mean of 1000 Unif(0, 10)

• What do last three examples show?
Experiment with the number of samples

What your code might
have looked like

• qplot(replicate(100, mean(norm(10))), type="histogram")

• qplot(replicate(10, mean(norm(10))), type="histogram")

• qplot(replicate(1000, mean(norm(10))), type="histogram")

• qplot(replicate(10000, mean(norm(10))), type="histogram")

• qplot(replicate(100, mean(norm(100))), type="histogram")

• qplot(replicate(100, mean(norm(1000))), type="histogram")

• qplot(replicate(1000, mean(norm(1))), type="histogram")

• qplot(replicate(10000 mean(norm(1000))), type="histogram")

Do not repeat
yourself

Dry rule

Why?

• Increases the difficulty of change

• May decrease clarity

• Leads to opportunities for inconsistency

• http://en.wikipedia.org/wiki/Don't_repeat_yourself

http://en.wikipedia.org/wiki/Don't_repeat_yourself
http://en.wikipedia.org/wiki/Don't_repeat_yourself

Functions

• Let us avoid repetition

functionname <- function(argument1,...) {

do stuff here

}

Building up a function

• Start simple

• Do it outside of the function

• Test as you go

• Give it a good name

Your turn

• Create a function that draws a histogram of
n draws of mean(rnorm(100))

• Modify your function to draw a histogram of
n draws of mean(rnorm(m))

• Modify your function to allow the user to
choose which distribution function, d, to use

Next task

• We know (hopefully) that a t test works
best on normally distributed data

• How can we test that?

Your turn

• Figure out how to do a t.test in R

• Figure out how to extract the p-value from
that object (use str and your subsetting
skills)

• Write a function to generate two vectors of
n random normals, compare them with a
t.test and return the p-value

Your turn

• Repeat several thousand times and draw a
histogram for various values of n

• Try varying the parameters of the two
normals. What happens when you vary the
mean? What happens when you vary the
standard deviation?

• What happens if you use non-normal data?
Eg. uniform, or poisson data

Another exploration

• How does our sample estimate compare to
the true unknown

• eg., when calculating the mean of a sample of
random normals, how many do we need to
draw to be reasonably certain we got the
right value?

What do we
want to see?

• A plot of the different estimates, vs. number
of sample points?

• So we need a data.frame with columns n,
and sample mean (and sample sd. as well)

• How can we do this?

• Can’t just use replicate

New function

• sapply

• Takes first argument, and calls second
argument one at a time

• sapply(1:10, sum) vs sum(1:10)

• sapply(1:10, function(n) mean(rnorm(n))

• mean <-

• sd <-

Create the data

• n <- rep(seq(1, 1000, by=10), each=10)

• mean <- sapply(n, function(x) mean(rnorm
(x)))

• qplot(n, mean)

Your turn

• Look at that plot for varying standard
deviations

• What about other distributions? eg. poisson

• What about when you estimate the standard
deviation?

• Try adding smoothed lines to the data (see
qplot chapter mentioned last week)

