Simulation

Hadley Wickham
Aims

• Learn how to simulate data to:
 • Test your statistical intuition
 • Perform power tests
 • Experiment with a new technique on known data
• Learn how to use functions to reduce duplication
Outline

- Basics of simulation
- Don’t repeat yourself
- Exploring some theorem you should have seen before
- Exploring the behaviour of a t-test
Basics of simulation

• Want to:
 • generate random numbers from known distribution
 • want to repeat the simulation multiple times
Generating random numbers

- **runif** (uniform), **rpois** (poisson), **rnorm** (normal), **rbinom** (binomial), **rgamma** (gamma), **rbeta** (beta)

- First argument for all is n, number of samples to generate

- Then parameters of the distribution (always check that the distribution is parameterised the way you expect)
Your turn

- Generate 100 numbers $\sim N(0, 1)$
- Generate 50 numbers $\sim N(10, 5)$
- Generate 1000 numbers \sim Poisson(50)
- Generate 10 numbers \sim Beta(0.1, 0.1)
- Generate 30 numbers \sim Uniform(0, 10)
Repetition

- Use the `replicate` function
- `replicate(n, expression)`
- `replicate(10, mean(rnorm(100)))`
- `qplot(replicate(100, mean(rnorm(10))), type="histogram")`
Your turn

- Plot histogram of:
 - $100 \times \text{mean of 10 N}(0,1)$
 - $1000 \times \text{mean of 10 Unif}(0, 10)$
 - $1000 \times \text{mean of 100 Unif}(0, 10)$
 - $100 \times \text{mean of 1000 Unif}(0, 10)$

- What do last three examples show?
 Experiment with the number of samples
What your code might have looked like

- `qplot(replicate(100, mean(norm(10))), type="histogram")`
- `qplot(replicate(10, mean(norm(10))), type="histogram")`
- `qplot(replicate(1000, mean(norm(10))), type="histogram")`
- `qplot(replicate(10000, mean(norm(10))), type="histogram")`
- `qplot(replicate(100, mean(norm(100))), type="histogram")`
- `qplot(replicate(100, mean(norm(1000))), type="histogram")`
- `qplot(replicate(1000, mean(norm(1))), type="histogram")`
- `qplot(replicate(10000, mean(norm(1000))), type="histogram")`
Do not repeat yourself
Dry rule
Why?

- Increases the difficulty of change
- May decrease clarity
- Leads to opportunities for inconsistency

http://en.wikipedia.org/wiki/Don't_repeat_yourself
Functions

• Let us avoid repetition

functionname <- function(argument1,...) {
 # do stuff here
}
}
Building up a function

• Start simple
• Do it outside of the function
• Test as you go
• Give it a good name
Your turn

• Create a function that draws a histogram of n draws of mean(rnorm(100))
• Modify your function to draw a histogram of n draws of mean(rnorm(m))
• Modify your function to allow the user to choose which distribution function, d, to use
Next task

• We know (hopefully) that a t test works best on normally distributed data

• How can we test that?
Your turn

• Figure out how to do a `t.test` in R

• Figure out how to extract the p-value from that object (use `str` and your subsetting skills)

• Write a function to generate two vectors of n random normals, compare them with a `t.test` and return the p-value
Your turn

- Repeat several thousand times and draw a histogram for various values of n
- Try varying the parameters of the two normals. What happens when you vary the mean? What happens when you vary the standard deviation?
- What happens if you use non-normal data? Eg. uniform, or poisson data
Another exploration

• How does our sample estimate compare to the true unknown

• eg., when calculating the mean of a sample of random normals, how many do we need to draw to be reasonably certain we got the right value?
What do we want to see?

- A plot of the different estimates, vs. number of sample points?
- So we need a data.frame with columns n, and sample mean (and sample sd. as well)
- How can we do this?
- Can’t just use replicate
New function

- **sapply**
- Takes first argument, and calls second argument one at a time
- `sapply(1:10, sum) vs sum(1:10)`
- `sapply(1:10, function(n) mean(rnorm(n)))`
Create the data

- \(n \leftarrow \text{rep(seq(1, 1000, by=10), each=10)} \)
- \(\text{mean} \leftarrow \text{sapply(n, function(x) mean(rnorm(x)))} \)
- \(\text{qplot(n, mean)} \)
Your turn

- Look at that plot for varying standard deviations
- What about other distributions? eg. poisson
- What about when you estimate the standard deviation?
- Try adding smoothed lines to the data (see qplot chapter mentioned last week)