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Abstract

Restructuring data is a common task in practical data analysis, and it
is usually unintuitive and tedious. Data often has multiple levels of group-
ing (nested treatments, split plot designs, or repeated measurements) and
typically requires investigation at multiple levels. For example, from a long
term clinical study we may be interested investigating relationships over time,
or between times or patients or treatments. Performing these investigations
fluently requires the data to be reshaped in different ways.

Currently R supplies a reshape function that can perform some of these
tasks, but confounds multiple steps in the process and is hard to use. We
propose a new conceptual framework for reshaping operations and an R pack-
age to “deshape” data frames and then flexibly “reshape” them to meet your
needs. This framework also produces contingency tables, cross-tabulations,
and summary statistics.

1 Introduction

This paper discusses a conceptual framework for data reshaping, and describes an
implementation of these principles in a R package, reshape.

Data reshaping is easiest to define with respect to aggregation. Aggregation is a
common and familiar task where data is reduced and rearranged into a smaller, more
convenient form, with a concomitant reduction in the amount of information. One
commonly used aggregation procedure are Excel’s Pivot tables. Reshaping involves
a similar rearrangement, but preserves all original information. Where aggregation
reduces many cells in the original data set to one cell in the new dataset, reshaping
preserves a one-to-one connection.

There are a number of general R functions that can aggregate data, for example
tapply, by and aggregate, and a function specifically for reshaping data, reshape.
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Each of these functions tends to deal well with one or two specific scenarios, and
each requires slightly different input arguments. In practice, careful thought is
usually required to piece together the correct sequence of operations to arrange the
data how you want. The reshape package overcomes these problems by using the
conceptual framework defined below to solve a general set of problems using just
two functions, reshape and deshape.

2 Conceptual framework

To help us think about all the ways we might rearrange a data set it is useful to think
about data in a somewhat unusual fashion. Usually, we think about data in terms of
a matrix or data frame, where we have observations in the rows and variables in the
columns. In this form it is difficult to investigate relationships between other facets
of the data: between subjects, or treatments, or replicates. Reshaping the data
allows to explore these other relationships while still being able to use the familiar
tools that operate on columns. Reshaping is an important (but often unrecognised)
part of practical data analysis and is often necessary when exploring, displaying
and analysing data.

For the purposes of reshaping, we can divide the variables into two groups:
identifier and measured variables.

1. Identifier, or id, variables identify the unit that measurements take place on.
Id variables are usually discrete, and are typically fixed by design. In ANOVA
notation (Yijk), id variables are the indices on the variables (i, j, k).

2. Measured variables represent what is measured on that unit (Y ).

It is possible to take this abstraction a step further and say there are only
id variables and a value, where the id variables now also identify what measured
variable the value represents. For example, we could represent this table:

Subject Time Age Weight Height
John Smith 1 50 90 1.80
Mary Smith 1 NA NA 1.70

as:

Subject Time Variable Value
John Smith 1 Age 50
John Smith 1 Height 90
John Smith 1 Weight 1.80
Mary Smith 1 Height 1.7

Now each row represents one observation of one variable. This is what I will refer
to as “deshaped” data. Compared to the original data set, it has a new id variable
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“variable”, and a new column “value”, which represents the value of that observa-
tion. We now have the data in a form in which there is no distinction between our
original observed variables and other id variables.

This form, in itself, is not terribly useful, but it is easy to manipulate. An-
other interesting feature of this form is that we do not need to store missing values
explicitly, but instead are they are reconstructed as necessary when the data is
reshaped.

3 Implementation

With this conceptual framework established, I will discuss particular details of the
implementation in R. Ideally, we want easy to use tools to restructure data frames
that use the insights from the ideas above. I will discuss why we need a new package
to reshape data, and how we can specify how the form of the reshaped data.

The first step is to “deshape” the data. This is essentially a trivial operation,
and very similar to the existing R function stack. The next challenge is to specify
how we want the data to look with the reshape function. A natural way to do
this is to specify which variables should form the columns and which should form
the rows. In the usual data frame, the “variable” id variable forms the columns,
while all other id variables form the rows. Aggregation occurs when the variables
do not uniquely identify one row, and in this case we need an aggregation function
to reduce the data. Examples later in the chapter will make this concrete.

The order the row and column variables are specified in is very important.
As with a contingency table there are many possible ways of displaying the same
variables, and the way they are organised reveals different patterns in the data.
Variables specified first vary slowest, and those specified last vary fastest. Because
comparisons are made most easily between adjacent cells, the variable you are most
interested in making comparisons between should be specified last, and the early
variables should be thought of as conditioning variables. An additional constraint
is that displays have limited width but essentially infinite length, so variables with
many levels must be specified as row variables. It is also desirable to adhere to
common conventions, so where possible, “variable” should appear in the column
specification.

3.1 Deshaping

The R command to deshape a data set is deshape. If you don’t specify either
measured or id variables, the function will try to guess which are id variables: any
factors, integers or columns with 5 or less different values. If you specify only the
measured variables, it assumes the remainder are identifier variables, and vice versa.

One complication of this design is that all values must be of the same type. This
is not usually a big problem because most of the time you are dealing with numeric
data. I have been experimenting with storing this data in a list for maximum
flexibility - this however makes later code more complicated as we can no longer
rely on straightforward vectorisation.
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3.2 Functions that return multiple values

Occasionally it is useful to aggregate with a function that returns multiple values,
e.g.. range, summary etc. This can be thought of as combining multiple reshapes
each with an aggregation function that returns one variable. We do this with an
additional variable, result variable that differentiates the multiple return values.
This result variable uses names if available, otherwise will create names of the
form X1, X2,... By default, this new id variable will be shown as last column
variable, but you can specify the position manually by including result variable
in the list of row and column variables.

3.3 Row and column names

There are two ways to think about the results from an aggregation command,
as either a matrix of numbers with some attributes that describe the row and
column names, or as a data frame with the row names as columns. Most current
R aggregation functions return the first, implicit, form, whereas reshape returns
the explicit data frame form. Why the difference? The implicit form is often
inconvenient to deal with – rownames are data too.

3.4 Example

The reshape package is available on CRAN and can be installed using the R com-
mand install.packages("reshape"). This section will work through some tech-
niques using the reshape package with an example data set (french fries). The
data is from a sensory experiment investigating the effect of different frying oils
on the taste of french fries over time. There are three different types of frying oils
(treatment), each in two different fryers (rep), tested by 12 people (subject) on 10
different days (time). The sensory attributes recorded, in order of desirability, are
potato, buttery, grassy, rancid, painty flavours. The first few rows of the data look
like:

time treatment subject rep potato buttery grassy rancid painty
61 1 1 3 1.00 2.90 0.00 0.00 0.00 5.50
25 1 1 3 2.00 14.00 0.00 0.00 1.10 0.00
62 1 1 10 1.00 11.00 6.40 0.00 0.00 0.00
26 1 1 10 2.00 9.90 5.90 2.90 2.20 0.00
63 1 1 15 1.00 1.20 0.10 0.00 1.10 5.10
27 1 1 15 2.00 8.80 3.00 3.60 1.50 2.30

One of the first things we might be interested in is how balanced this design is,
and whether there are many different missing values. We can investigate this using
length as our aggregation function:

ff_d <- deshape(french_fries, id=1:4)
reshape(ff_d, subject ~ time, length)
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subject X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
3 30 30 30 30 30 30 30 30 30 NA
10 30 30 30 30 30 30 30 30 30 30
15 30 30 30 30 25 30 30 30 30 30
16 30 30 30 30 30 30 30 29 30 30
19 30 30 30 30 30 30 30 30 30 30
31 30 30 30 30 30 30 30 30 NA 30
51 30 30 30 30 30 30 30 30 30 30
52 30 30 30 30 30 30 30 30 30 30
63 30 30 30 30 30 30 30 30 30 30
78 30 30 30 30 30 30 30 30 30 30
79 30 30 30 30 30 30 29 28 30 NA
86 30 30 30 30 30 30 30 30 NA 30

Of course we can also create our own aggregation function. Each subject should
have had 30 observations at each time, so by displaying the difference we can more
easily see where the data is missing.

reshape(ff_d, subject ~ time, function(x) 30 - length(x))

subject X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
3 0 0 0 0 0 0 0 0 0 NA
10 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 5 0 0 0 0 0
16 0 0 0 0 0 0 0 1 0 0
19 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 NA 0
51 0 0 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 0 0 0
63 0 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0 0
79 0 0 0 0 0 0 1 2 0 NA
86 0 0 0 0 0 0 0 0 NA 0

We can also easily see the range of values that each variable takes:

reshape(ff_d, variable ~ ., function(x) c(min=min(x), max=max(x)))

variable max min
buttery 11.2 0
grassy 11.1 0
painty 13.1 0
potato 14.9 0
rancid 14.9 0



Proceedings of DSC 2005 6

Since the data is fairly well balanced, we can do some (crude) investigation as
to the effects of the different treatments. For example, we can calculate the overall
means for each sensory attribute for each treatment:

reshape(ff_d, treatment ~ variable, mean,
margins=c("grand_col", "grand_row"))

treatment potato buttery grassy rancid painty NA.
1 6.89 1.78 0.649 4.07 2.58 3.19
2 7.00 1.97 0.663 3.62 2.46 3.15
3 6.97 1.72 0.681 3.87 2.53 3.15
. 6.95 1.82 0.664 3.85 2.52 3.16

Note the row and column margins. We can also produce margins at different
levels. The following example shows the results broken down for subjects 3 and 11,
with both overall means and means for each subject:

reshape(ff_d, treatment + subject ~ variable, mean,
margins="treatment", subset=subject %in% c(3,10))

treatment subject potato buttery grassy rancid painty
1 3 6.22 0.372 0.1889 2.11 3.11

10 9.95 6.750 0.5850 4.02 1.37
. 8.18 3.729 0.3974 3.11 2.20

2 3 6.74 0.589 0.1056 3.14 2.48
10 10.00 6.980 0.4750 2.15 0.82
. 8.45 3.953 0.3000 2.62 1.61

3 3 5.29 0.767 0.0944 2.86 2.87
10 10.03 6.450 0.1450 3.11 0.69
. 7.79 3.758 0.1211 2.99 1.72

Finally, since we have a repetition over treatments, we might be interested in
how reliable each subject’s is – are the scores for the two reps highly correlated?
We can explore this graphically by reshaping the data and using a lattice plot.
Our graphical tools work best when the things we want to compare are in different
columns, so we’ll reshape the data so we now have a column for each rep.

xyplot(X1 X2 | variable, reshape(ff d, ... rep), aspect="iso")
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rancid

If we wanted to explore the relationships between subjects or times or treatments
we could follow similar steps.

4 Conclusion

This paper has presented a useful framework with which to think about reshaping
data, and an intuitive implementation in R.

Future work includes generalising the algorithms to deal better with non-numeric
data, and large data sets. There are also interesting opportunities to explore using
the reshape tool to produce graphical summaries, and creating a GUI to make
reshaping data easier. Stotle et al [1] have explored some of these ideas in their
Polaris software. It would also be useful to be able to link in to relational databases
so that as much aggregation as possible can be pushed off to a program that doesn’t
require all the data to fit in memory.
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