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Abstract

This paper presents a set of tools to explore the re-
sults of cluster analysis. We use R to cluster the data,
and explore it with textual summaries and static graph-
ics. Using Rggobi2 we have linked R to GGobi so that
we can use the dynamic and interactive graphics ca-
pabilities of GGobi. We then use these tools to inves-
tigate clustering results from the three major families
of clustering algorithms.

1 Introduction

Cluster analysis is a powerful exploratory technique
for discovering groups of similar observations within a
data set. It is used in a wide variety of disciplines, in-
cluding marketing and bioinformatics, and its results
are often used to inform further research. This paper
presents a set of linked tools for investigating the clus-
tering algorithm results using the statistical language
R [14], and the interactive and dynamic graphics soft-
ware GGobi [16] .

R and GGobi are linked with the R package
RGGobi2 [1]. This package builds on much prior
work connecting R and S with XGobi and GGobi
[17, 18], and provides seamless transfer of data and
metadata between the two applications. This allows
us to take advantage of strengths of each application:
the wide range of statistical techniques already pro-
grammed in R, including many clustering algorithms,
and the rich set of interactive and dynamic graph-
ics tools that GGobi provides. The R code used for
the analyses and graphics in this paper has been built
into an R package, clusterExplorer, which is avail-
able from the accompanying website http://had.co.
nz/cluster-explorer, along with short videos illus-
trating dynamic techniques that are not amenable to
static reproduction.

In this paper we provide a brief introduction to
clustering algorithms and their output. We describe
graphical tools, both static and dynamic/interactive,
that we can use to explore these results. We then use

these visual tools to explore the results of three clus-
tering algorithms on three data sets.

2 Clustering algorithms

It is hard to define precisely what a cluster is, but
obvious clusters are intuitively reasonable, as in figure
1. Here we would hope that any reasonable clustering
algorithm would find the three obvious clusters. How-
ever, real data is rarely as clear cut and it is unusual
to see such an apparent underlying structure. For this
reason, we typically want cluster analysis to organise
the observations into representative groups.

It is generally hard to tell if the generated clusters
are good or bad. However, it is more important that
the clusters are useful for the problem at hand. Typi-
cally there is no one true clustering that we are trying
to recover, so it is common to use multiple clustering
techniques each of which may construct different clus-
ters and give us different insights into the problem.
Once we have these multiple clusters we need to be
able to compare between them, and also investigate
how the clusters partition the original data space. We
discuss useful techniques for these problems in the fol-
lowing section.

There is much literature dedicated to finding the
“best” clustering, or reclaiming the “true” number of
clusters. While these results are useful for homing in
on good candidates, it is wise to exercise some caution
as the assumptions may not hold true in practice. We
recommend that you use them as a rough guideline
for suggesting interesting clusterings to explore, and
we encourage you to investigate multiple clustering
algorithms.

Many of the clustering methods have difficulty
with data that has high co-dimensionality, or multi-
collinearity. In general, results will be better if you
can remove extraneous variables. However, you can
not tell which variables are extraneous until you have
clustered the data, which may have been affected by
the extra variables. It is useful to take an iterative
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Figure 1: Sometimes cluster structure is obvious! The right plot overlays convex hulls on the clusters.

approach, removing a variable after it becomes clear
that the variable contains little useful information.

Finally, it is worth remembering that the choice
of distance metric will have as much or more effect
on the final clusters as the choice of clustering al-
gorithm. Some clustering methods work directly on
the distance matrix allowing enormous flexibility in
this choice. There are many distance measures, par-
ticularly for discrete data, and it is worth consider-
ing which is most applicable to your problem. For
those clustering methods which implicitly work on Eu-
clidean distances, transformation of the data can re-
produce other distance measures. For example, scaling
to common variance effectively changes the distance
metric to correlation. This is recommended when you
have variables measured on different scales.

3 Interactive investigation tools

The aim of this paper, and accompanying R pack-
age, is to provide tools to enable comparison of differ-
ent cluster assignments. These can come from:

e Different clustering algorithms (eg. hierarchical,
k-means, model based).

e Different algorithm parameters algorithms (eg.
metric, distance calculation).

e Different numbers of clusters.

e Additional classification information not used
during the clustering.

We also want to be able to explore what makes dif-
ferent clusters different, and how the clusters divide
up the original data space. By using R and GGobi
together we can provide a variety of methods to aid
exploration and comparison:

e Textual summaries: confusion matrices, cluster
means and other summary statistics.

e High quality static graphics generated by R: fluc-
tuation diagrams [10], parallel coordinates plots,
boxplots, barcharts and spineplots [11].

e Dynamic and interactive graphics in GGobi: an-
imations cycling between different cluster assign-
ments, tours to explore the clustering in high di-
mensions, manual tuning of clusters using brush-
ing, animations using color to explore misclassi-
fied cases. Unfortunately these can not be illus-
trated on the static printed page, but videos can
be found on the paper’s website.

A particularly useful feature in GGobi is the grand
tour [2, 5, 6]. The grand tour randomly rotates
through all possible ways of projecting the original
high dimensional data onto fewer dimensions. When
plotting data we usually project it down onto two di-
mensions. One way of projecting the data is the scat-
terplot matrix, which looks at each face of the data
cube. Another way is to use the grand tour and look
at it from every angle. It is especially important to do
this for cluster analysis as the clustering may appear
to be excellent in certain views, but have substantial
overlap in others. One demonstration of this is figure
7.

4 Exploring cluster assignment

Cluster algorithms output a list of values assigning
each observation to a cluster. This list is categori-
cal, not ordinal, and while different clustering meth-
ods may recover the same clusters they might not give
them the same cluster identifier. For this reason, it is
useful to be able to match up similar clusters so that
they have similar identifiers. This will reduce spurious
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Table 1: Simulated data illustrating manual arrangement of a confusion matrix to aid interpretation.

visual differences between plots. Table 1 gives an ex-
ample of how this rearrangement can be accomplished
by hand.

Ideally, we want to able to do this rearrangement
automatically for a large number of tables produced
by different clustering algorithms. Unfortunately this
problem is NP complete [15], and we must either limit
ourselves to small numbers of clusters or use heuris-
tics. For the small numbers of clusters used in this
paper, we search through the space of all possible per-
mutations, looking for the one with the smallest off di-
agonal, or equivalently the largest diagonal, sum. This
is practical for up to eight clusters, after which gen-
erating the permutations and calculating the diagonal
sums becomes prohibitively time consuming. We are
investigating a heuristic method for larger numbers of
clusters.

It is also nice to display this in a graphical form.
One tool commonly used to do this is the heatmap,
which we strongly discourage on perceptual grounds.
A far more effective tool is the fluctuation diagram
[10]. Where the heatmap maps the value to colour,
the fluctuation diagram maps value to length on a
common axis, which is easier to perceive [4]. Figure 2
demonstrates the two.

These methods can also be used for any other tech-
nique that produces a list of identifiers. For example,
in supervised classification, they can be used to com-
pare true and predicted values.

5 Examples
Here we demonstrate clustering methods from the
three major families:

e Partitioning, with k-means clustering.

e Hierarchical, with agglomerative hierarchical
clustering.

e Model based, with a normal mixture model ap-
proach

It is worthwhile to mention an alternative method
to these automated techniques, which is is manual

clustering as illustrated in [5, 21]. This method is
much more time consuming, but is more likely to pro-
duce meaningful clusters. It makes few assumptions
about cluster structure, and these assumptions can be
easily modified if necessary.

To illustrate these three methods, we will use three
different datasets, two from animal ecology, flea bee-
tles and Australian crabs, and one demographic, US
arrest rates in 1973.

The flea beetle data was originally described in [12].
It consists of measurements of six beetle body parts,
from 74 beetles from three known species. The three
species are clearly separated into three distinct groups,
as shown in figure 3. This data set should be an easy
test of a classification algorithm.

The Australian crabs data set [3] records five body
measurements for 200 crabs of known sex and species.
The shape is difficult to show statically, but by watch-
ing the grand tour for a while we see that the data is
composed of four pencil shaped rods which converge to
a point. Each one of the pencils is a separate combina-
tion of sex and species. The images in figure 4 attempt
to show this using static graphics. There are four dis-
tinct groups in this example, but there is also high
codimensionality, and we might expect algorithms to
have more difficulty than with the flea data.

The third data set contains 1973 data on the num-
ber of arrests per 100,000 people for assault, murder
and rape for each of the 50 states in the US, as well as
the percent of resident of each state who live in urban
areas [13]. There are no obvious clusters, a difficult
assertion to prove here, but figure 5 shows three rep-
resentative views. In this case, we are looking for the
clustering algorithm to find useful groups.

All of the data sets were standardised by dividing
each variable by its standard deviation to ensure that
all variables lie on a common scale.

5.1 k-means clustering

The k-means algorithm [9] works by contrasting the
sum of squared distances within clusters to the sum
of squared differences between clusters, somewhat like
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Figure 2: Heatmap on left, fluctuation diagram on right. Note that it is much easier to see subtle differences in

the fluctuation diagram.
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Figure 3: Projection from grand tour of flea data. Points are coloured by species. Note the clean separation into

three groups

a 2-way ANOVA. To start k-means randomly assigns
each point to a starting cluster, and then iteratively
moves points between groups to minimise the ratio of
the within to between sums of squares. It tends to
produce spherical clusters.

Using the flea beetles data, figure 7 shows the
clusters formed by the k-means algorithm with three
groups. This clustering is stable, regardless of the ini-
tial random configuration selected. You can see that
it has failed to retrieve the true clusters present in
the data. The first view of the clusters shows this
very clearly: you can see two red points amongst the
green, and two green points amongst the red. In the
second view of the data, the problem is not clear, and
the clusters look perfectly adequate. I found these two

views using the grand tour: it is dangerous to look at
only a few 2D views of the data—there may be mes-
sages that you are missing.

Since we have a set of true cluster identifiers, we
can compare the the true to the ones we found us-
ing the confusion matrix and fluctuation diagram, as
shown in table 2 and figure 6.

The R code to produce these figures is very simple:

ref <- as.numeric(flea$species)

fl <- scale(as.matrix(fleal,1:6]))
x <- ggobi(flea)$flea
glyph_colour(x) <- ref
glyph_colour(x) <- clarify(

kmeans (f1, 3)$cluster,

ref
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Figure 4: Three views of the crabs data set. The left and centre views show side of views of the four pencils,

while the right view shows a zoomed in head on image.
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Figure 5: Three views of the arrests data. There are no obvious clusters.

Here, we first create a reference vector of the “true”
clusters. We then scale the data and send it to GGobi,
retaining a reference to the dataset in GGobi. The fol-
lowing two lines colour the points, first with the refer-
ence vector, and then with the results of the k-means
clustering. The clarify function relabels the k-means
result to match the reference vector as closely as pos-
sible. You can easily modify this code to use whatever
clustering algorithm you are interested in.

The k-means algorithm is non-deterministic and
running it multiple times may result in multiple cluster
configurations, as shown in figure 8. It is interesting
to view this as an animation. In practice, it is best to
run the k-means algorithm from many random start-
ing positions and then choose the one with the best
score.

5.2 Hierarchical clustering

Hierarchical clustering methods work through ei-
ther progression fusion (agglomerative) or progressive
partitioning (divisive). Divisive methods are rarely
used, so we focus here on agglomerative methods. Hi-
erachical methods only require a matrix of interpoint
distances, and so are easy to use with distance mea-
sures other than Euclidean.

Agglomerative methods build up clusters point by
point, by joining the two points or two clusters which
have the smallest distance [19]. To do this we need
to define what we mean by the distance between two
clusters (or one cluster and a point). There are a num-
ber of common methods: use the closest distance be-
tween points in the cluster (simple linkage, creates the
minimal spanning tree), the largest distance (complete
linkage), the average distance (UPGMA), or the dis-
tance between cluster centroids. Each of these meth-
ods finds clusters of somewhat different shapes: sin-



True

k-means 1 2 3
1119 0 2
2 0 22 0
3 2 0 29

Table 2: Confusion matrix comparing “true” clusters with those from k-means clustering with three clusters.

Figure 6: Fluctuation diagram, a visual representation of the data in 2

gle linkage forms long skinny clusters, average linkage
forms more spherical clusters.

To illustrate some of these methods, we will use
the arrests data, as described above. Figure 9 shows
the results of the retrieving four clusters using com-
plete linkage on correlation distance. It also illustrates
another method we can use to highlight clusters: dis-
playing the convex hull of the data. This technique
should be used with caution as it makes the clusters
look very distinct, possibly due to the gestalt princi-
ples of connectedness and closure [20].

Finally, we want to see how the clusters differ with
respect to the original variables. We can do this inter-
actively with parallel coordinates plots in GGobi, or
statically in R. We have much more control over ap-
pearance in R and can choose whether the axes should
be scaled to a common range, or we can use boxplots
instead of lines. This different methods are shown in
10.

5.3 Model based clustering

Another way to define a cluster is to use an ex-
plicit density model. If we use a multivariate normal
to model this density then we expect clusters to look
spheroidal. Determining what the clusters are then
becomes a mixture model problem, and in this context
is known as model based clustering. This technique
can be used with an specified density, but a multi-

variate normal model is most common to the simple
parameterisation of correlation effects.

The model based clustering we use [8, 7], is based
on a mixture of multivariate normals. Depending on
the restrictions we place on the covariance matrix, we
control the shapes, volumes and orientations of the
clusters. If we estimate a covariance matrix for each
cluster, then each cluster can have a different shape
and orientation. If we estimate one covariance ma-
trix, then all clusters must have the same orientation
and shape. We can also place additional restrictions
on the covariance matrix, for example, to make only
spherical clusters.

Unlike the other cluster techniques, model based
clustering can leverage its distributional assumptions
to provide a way to select the best model and best
number of clusters. Figure 11 illustrates this with
a plot of the BIC statistic for each model. Model
based clustering reclaims the flea beetle specifies clus-
ters perfectly, as shown in figure 12.

Let’s try model based clustering on a more difficult
example, the Australian crabs data. From inspection
of the plots (figure 4) we might expect that the best
model will have clusters with similar size and shape,
but pointing in different directions.

The best model is elliposidal, equal variance with
4 groups, which seems promising, but the BIC plot,
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Figure 7: Two views of the k-means clustered data. Look at the errors in clustering! There are two red points
and two green points that are obviously grouped erroneously, but we only see this in one of the two views. It is
important to look at the results from many different directions!
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Figure 8: Three sets of results from a k-means clustering with four clusters. The result is highly dependent on
the starting configuration.

figure 13, doesn’t show any strong patterns. Lets look build up these techniques into a cohesive family. We

at what the best clustering found in figure 14. also plan to investigate interactive tuning of cluster-
The model based clustering hasn’t reclaimed ing parameters, so that as you adjust algorithm pa-

any the original groups but has instead split the rameters you see the changes reflected immediately in

species/sex combinations about half way along the GGobi.

Ef:cllé. A fluctuation plot makes this clear, see fig References
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